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Multi-omics analyses of serum metabolome, gut microbiome
and brain function reveal dysregulated microbiota-gut-brain
axis in bipolar depression
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The intricate processes of microbiota-gut-brain communication in modulating human cognition and emotion, especially in the context
of mood disorders, have remained elusive. Here we performed faecal metagenomic, serum metabolomics and neuroimaging studies on
a cohort of 109 unmedicated patients with depressed bipolar disorder (BD) patients and 40 healthy controls (HCs) to characterise the
microbial-gut-brain axis in BD. Across over 12,000 measured metabolic features, we observed a large discrepancy (73.54%) in the serum
metabolome between BD patients and HCs, spotting differentially abundant microbial-derived neuroactive metabolites including
multiple B-vitamins, kynurenic acid, gamma-aminobutyric acid and short-chain fatty acids. These metabolites could be linked to the
abundance of gut microbiota presented with corresponding biosynthetic potentials, including Akkermansia muciniphila, Citrobacter spp.
(Citrobacter freundii and Citrobacter werkmanii), Phascolarctobacterium spp., Yersinia spp. (Yersinia frederiksenii and Yersinia aleksiciae),
Enterobacter spp. (Enterobacter cloacae and Enterobacter kobei) and Flavobacterium spp. Based on functional neuroimaging, BD-related
neuroactive microbes and metabolites were discovered as potential markers associated with BD-typical features of functional
connectivity of brain networks, hinting at aberrant cognitive function, emotion regulation, and interoception. Our study combines gut
microbiota and neuroactive metabolites with brain functional connectivity, thereby revealing potential signalling pathways from the
microbiota to the gut and the brain, which may have a role in the pathophysiology of BD.
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INTRODUCTION
The bidirectional interaction between the brain and the gut
microbiota, the microbiota-gut-brain (MGB) axis, has emerged as a
research hotspot in psychiatry. Healthy gut microbiota is essential
for maintaining physical and mental well-being [1], while dysbiosis
in the microbial community—imbalances in the composition
and function of gut microbes—may disrupt immunological and
metabolic processes [2, 3], thus reshaping host emotion, cogni-
tion, behaviour, and contribute to the pathophysiology of major
psychiatric disorders [4, 5].

Bipolar disorder (BD) is a prevalent and debilitating mental illness
with complex aetiology. Emerging evidence has indicated BD as a
whole-body disease with changes in the gut microbiota and serum
metabolome [6, 7]. Recent reviews [8, 9] have summarised evidence
regarding the gut microbiota composition across major psychiatric
disorders including BD, showing that higher levels of Eggerthella,
Lactobacillus, Enterococcus, Flavonifractor and Streptococcus, and
lower levels of Coprococcus, Faecalibacterium and Ruminococcus,
were observed in BD patients compared to healthy controls (HCs).
Identified bacterial genera were reported to be involved in the
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production of short-chain fatty acids (SCFAs) [6, 10, 11], and
associated with glutamate and gamma-aminobutyric acid (GABA)
metabolism [9]. However, due to the limited number of studies,
modest sample sizes and inconsistent methodology, more investi-
gations with updated databases and high-resolution metagenomic
sequencing technologies are essential to uncover the interrelation-
ship between altered gut microbiota and BD aetiology [10–12].
Beyond the mere identification of BD-related microbial taxa,

attempts have been made to interpret the potential functionality
of 'signature' gut microbes. One important aspect was to examine
the gut microbiota-derived metabolites. In fact, there had been a
growing interest in investigating the role of microbial tryptophan-
kynurenine metabolism pathway in BD aetiology [13, 14]. The
reason may be that not only is tryptophan the precursor of
serotonin, a neurotransmitter is well known for its entangled
relationship with mood disorders [15]; but also altered levels of
tryptophan, kynurenine, kynurenic acid and xanthurenic acid were
found in the metabolic profiling of BD, defined as dysregulated
kynurenine pathway [13]. Notably, the bloodstream, a transporter
of metabolites, acted as a bridge for the 'crosstalk' between the
brain and the gut microbiota [7]. Studies had shown that the
serum metabolome of BD patients differed from that of healthy
individuals, reflecting changes in pathways related to the
metabolism of specific amino acid, lipid, the citric acid cycle and
polyunsaturated fatty acids [16–18]. However, serum metabolomic
alterations could be disease-specific or associated with medica-
tions to treat BD [17–19]. Therefore, a cross-sectional design with
drug-naïve or drug-free patients would be desirable to detect the
metabolic biomarkers for BD.
In an attempt to fully explore the components of the MGB axis

and how the gut microbiota may influence host metabolism and
neural networks, we hypothesised that an integrated analysis of the
gut microbiota, the serum metabolome and resting-state functional
connectivity (rsFC) might not only unravel their relationships but
also reflect the pathophysiological underpinnings of BD.
From a multi-omics approach, we employed shotgun metage-

nomic sequencing, untargeted mass spectrometry, and resting-state
functional magnetic resonance imaging (rs-fMRI) to investigate the
multidimensional differences between 109 unmedicated, depressed
BD patients and 40 healthy counterparts. With the advantage of high-
resolution technologies and multidimensional data, we would be in a
better position to identify quantifiable and informative biomarkers for
BD. Moreover, plausible interactive links between the gut and the
brain could be evaluated through the concomitant changes between
different omics. The current study would help to provide a
comprehensive landscape of the gut-brain axis in the clinical context
of acute bipolar depression.

METHODS
Ethics statement
As part of the Integrated Study of Bipolar Disorder (ISBD, ChiCTR-COC-
17011401), this study was approved by the Ethics Committee of the First
Affiliated Hospital, School of Medicine, Zhejiang University (Ref.2017-397)
and the BGI Review Board of Bioethics and Biosafety (BGI-IRB20153). All
applicable institutional regulations concerning the ethical use of informa-
tion and samples from human participants were followed during this
study. Each individual or his/her legal guardian provided the signed
informed consent before enrolment.

Human population recruitment
A hundred and nine BD patients with a current depressive episode and
forty healthy controls from the same geographical area (Zhejiang Province,
China) were recruited from the Department of Psychiatry, the First
Affiliated Hospital, Zhejiang University School of Medicine. According to
the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition
(DSM-IV) criteria for BD-I, BD-II and BD not otherwise specified (NOS), the
diagnosis was confirmed by two trained psychiatrists fulfilling the Chinese
version of the Mini-International Neuropsychiatric Interview (MINI) through

a structured clinical interview. The 24-item Hamilton Depression Rating
Scale (HAMD-24) [20] and the Montgomery–Asberg Depression Rating
Scale (MADRS) [21] were used to evaluate the severity of depression; the
Hamilton Anxiety Rating Scale (HAMA) [22] was used to measure the
severity of anxiety; the Young Mania Rating Scale (YMRS) [23] was used to
assess the severity of mania. The HAMD-24 score ≥14 was defined as
'having a current depressive episode' and was set as the threshold for
inclusion. All patients needed to meet the following inclusion criteria: (i)
HAMD-24 score no less than 14; (ii) drug-naïve or drug-free for at least
3 months; (iii) no other psychiatric comorbidity or apparent suicidal
thoughts (suicidal ideation scored ≤2 in MADRS) to exclude individuals not
suitable for standardised pharmacotherapy in the ISBD study. Exclusion
criteria included: (i) chronic, severe cardiovascular or cerebrovascular
diseases or other organic diseases of the brain (e.g. epilepsy and tumours);
(ii) chronic or acute inflammatory, autoimmune disorders; (iii) history of
substance abuse, such as alcohol and tobacco; (iv) current pregnancy or
breastfeeding subjects; (v) consumption of antibiotics, prebiotics or
probiotics within 4 weeks before screening; (vi) having contraindications
for MRI scanning (e.g. metal implant); (vii) failing to provide the informed
consent. HCs with no DSM-IV psychiatric disorders were recruited from
local communities and were required to abide by the exclusion criteria.
Laboratory examinations on the thyroid function, blood inflammatory
factors and T-cell subsets in patients were performed to identify potential
physical illnesses. Prior to the enrolment, all the participants were inquired
about their dietary habits to exclude individuals with special dietary
requirements, such as food allergy, food intolerance, vegetarianism, or due
to religious or cultural reasons. Other relevant demographic and clinical
profiles e.g. age, sex, height, weight, body mass index (BMI), marital status,
drinking and smoking history, age of onset and previous history of
medication of participants were collected (Supplementary Table 1).
Notably, there was no significant difference between the BD group and
the HC group in relation to age, sex, and BMI, analysed by Wilcoxon’s rank-
sum test and Fisher’s exact test (p > 0.05; Supplementary Table 2).

Stool and plasma sample collection
Faecal samples from all 149 recruited participants were collected during the
clinical examination visit. Participants were asked to deposit stool into a
collection bowl and hand the bowl over to a clinical assistant. The stool
sample was aliquoted using a scoop into a tube which was snap-frozen in dry
ice and stored at −80 °C within half an hour after collection. A blank swab
was added to the faecal preservation solution as a control. The elbow vein
blood (5ml) was collected from 80 BD patients and 38 HCs (thirty-one
individuals out of the total 149 participants refused to be sampled, and were
thus removed from this session) during 6 a.m.to 7 a.m. in a fasting state with
vacutainer tubes containing heparin, and was immediately centrifuged for
10min (3000 rpm, 4 °C). Each aliquot (1.5ml) of the plasma samples was
stored at –80 °C until the ultrahigh-performance liquid chromatography was
performed with liquid chromatography-mass spectrometry (LC/MS) analysis.

Metabolome profiling of human serum samples
Sample preparations. Untargeted metabolomics analysis using LC/MS was
conducted. Briefly, the supernatant of the NIST standard curve correction
solution was obtained by mixing the serum sample with 80% methanol,
vortexed, and centrifuged at 12,000 rpm at 4 °C for 10min. After thawing all
samples at 4 °C, the samples for quality control and LC-MS detection were
prepared at the same centrifuge condition as previously described [24].

LC-MS-based serum metabolic profiling and identification of metabolites. The
raw data was converted into the mzXML format using ProteoWizard
(v3.0.8789). The identification, filtration and alignment of peaks were
conducted by the R-package XCMS (R-v3.1.3). After quality control, the
metabolite annotations of the LC-MS data were verified using databases
including LipidMaps (http://www.lipidmaps.org), massbank (http://www.
massbank.jp/), Human Metabolome Database (HMDB) (http://www.hmdb.ca),
Metlin (http://metlin.scripps.edu), mzclound (https://www.mzcloud.org), as well
as the metabolome database, which was constructed by the BioNovoGene
(Suzhou, China) to avoid missing any important metabolite.

Metabolite pathway identification
The biological pathways of key metabolites that manifested significant
differences between BD patients and HCs were annotated. Biological
pathway analysis was performed through metabolite set enrichment
analysis using the MetaboAnalyst tool suite [25].
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MRI data acquisition and processing
Acquisition. Forty-four BD patients and thirty-seven HCs (68 individuals
out of the total 149 participants were not able to attend the MRI session)
underwent a 20-min MRI session including structural and functional scans
on a 3.0 Tesla GE Signa HDxt scanner (GE Healthcare, Waukesha, Wisconsin,
USA), equipped with an eight-channel phased array head coil. All subjects
were instructed to remain still and awake with their eyes open during the
whole session. Cushions were used to restrict head movements and
earplugs for reducing the noise.
Resting-state functional images using an echo-planar imaging protocol

were acquired with the following parameters: TR (repetition time)= 1800
ms, TE (echo time)= 30ms, flip angle= 90 degrees, voxel size= 3.75 ×
3.75 × 4mm3, field of view= 240 × 240mm2, 28 axial slices per volume,
180 time points/volumes. High-resolution 3D T1-weighted magnetisation-
prepared rapid acquisition with gradient echo (MPRAGE) structural images
were acquired for anatomical reference, with parameters of TR= 7.05ms,
TE= 2.85 ms, flip angle= 8 degrees, voxel size= 1mm3 isotropic, field of
view= 240 × 240mm2.

Data preprocessing and denoising. Both structural and functional images
were preprocessed with the CONN-20.b toolbox [26] (http://www.nitrc.org/
projects/conn, default preprocessing pipeline), based on SPM12 [27].
Functional scans were realigned to the corresponding T1 images and
resampled along the phase-encoded direction to carry out susceptibility
distortion correction for adjusting head motion and possible deformation
due to field inhomogeneities (realign and warp). Functional slices
(interleaved and bottom-up) were time-shifted and resampled for slice-
timing correction. Since functional images were notoriously prone to head
motion artefacts, a more conservative approach to detecting outlier scans
due to excessive head motion was employed. Scans with composite
subject motion threshold over 0.5 mm or the observed global blood-
oxygen-level-dependent (BOLD) signal changes above 3 standard devia-
tions were marked as outliers [28].
All anatomical and functional images were normalised to the standard

Montreal Neurological Institute (MNI) space, and then segmented
into grey matter, white matter, and cerebrospinal fluid (CSF) classes
(segmentation and normalisation). Direct normalisation mapped the
functional data (interpolated in isotropic 2 mm voxels; resolution
consistent with the MNI average mask) to the reference structural data.
The resulting functional data were smoothed with a Gaussian kernel of 6
mm full-width half maximum to boost the BOLD signal-to-noise ratio. To
further mitigate the influence of motion-related and physiological noise,
necessary denoising procedures had been applied. CONN’s anatomical
component correction strategy computed the confounding effects of
noise components from white matter and CSF, which were linearly
regressed out of the global signal using aCompCor [29]. Band-pass
filtering [0.008 Hz, 0.09 Hz] was employed to the preprocessed functional
time series.

Regions of interest (ROIs). We defined the whole brain (excluding the
cerebellum) into 136 different ROIs to conduct the ROI-based rsFC analysis.
Ninety-one bilateral cortical ROIs were defined from FSL Harvard-Oxford
Atlas maximum likelihood cortical atlas [30] and fifteen bilateral subcortical
ROIs were defined from FSL Harvard-Oxford Atlas maximum likelihood
subcortical atlas (see Supplementary Table 9 for the ROIs list). Based on
CONN’s default clustering and ordering algorithms, we also included an
additional 30 networks-based ROIs defined from CONN’s independent
component analyses of the Human Connectome Project dataset [26] into
the rsFC analysis.

Neuroimaging analyses. We investigated the ROI-based rsFC at the
subject level with the CONN-20.b toolbox [31]. Average BOLD timeseries
of all predefined ROIs were analysed in a pairwise manner to compute the
Fisher-transformed bivariate correlation coefficient between each pair of
ROIs. Pairwise ROI-to-ROI connectivity (RRC) matrix characterised the entire
networks of connections for each subject. Subject-level RRC matrices were
extracted from CONN to be studied subsequently with serum metabolome
and gut microbiome data.
We examined between-sample RRC matrices (BD vs HC group) and

carried out the functional network connectivity analysis using multi-
variate parametric generalised linear models (GLM) [32], where group-
relevant functional connections were organised into significant network
clusters with a cluster-level false discovery rate (FDR)-corrected p < 0.05
threshold.

Faecal DNA extraction and metagenomic sequencing
According to the manufacturer’s instructions, DNA was extracted from
thawed faecal samples with OMEGA‐soil DNA Kit (Omega Bio‐Tek, USA).
The extracts were treated with DNase-free RNase to eliminate RNA
contamination. The DNA quality was examined by NanoDrop 2000 UV–vis
spectrophotometer and 1% agarose gel electrophoresis. The DNA library
was constructed according to the manufacturer’s instructions (Illumina).
Applying the same workflow as described previously [33], we constructed
one paired-end (PE) library with an insert size of 350 bp for each sample,
followed by a high-throughput sequencing with PE reads of length 2 × 150
bp, using NEXTFLEX Rapid DNA-Seq (BioScientific, Austin, TX, USA). PE
sequencing was performed on Illumina NovaSeq (Illumina Inc., San Diego,
CA, USA). Low quality or human genomic DNA reads were removed [34].
Human genomic DNA reads were identified via SOAP2.21 [35] and were
removed if they shared >95% sequence [34] with the human genome
reference sequence (hg38).

Construction of species and KO profiles
The high-quality reads were aligned to the gut microbiome genomes
catalogue [36] by bwa (default parameters) and 91.97 ± 3.31% reads (n
= 149; Supplementary Table 4) were mapped. Sequence-based contigs
abundance profiling was performed [37] by jgi_summarize_bam_con-
tig_depths (default parameters). Reads were mapped to the genomes
catalogue and the number of reads counted formed a mapping depth or
abundance matrix. Considering the different sequencing depths of
different samples, we used the mapping depth matrix of normalisation
to estimate the abundances of contigs. For the species profile, we used
the species assignment of each contig from the original genome
catalogue and took the median of the relative abundance of contigs
from the same species to generate the abundance of that certain
species. The KO functional profile of each species was estimated as
follows: the relative abundance of a KO was calculated as the summation
of the relative abundance of its corresponding contigs.

Species count, α-diversity and β-diversity
The calculation of species count was based on a documented method [38],
which was to tally non-zero species in each sample. The α-diversity (within-
sample diversity) was estimated on the basis of the gene profile of each
sample according to the Shannon index, using R (3.5.0) vegan package
[39]. The vegdist function in vegan package was implemented to compute
the Bray–Curtis dissimilarity and the β-diversity (between-sample diversity).

Statistical analysis
Multivariate analysis. Multivariate statistical analyses were applied to
discriminate between BD patients and healthy individuals. Principle
component analysis (PCA) of subject-level RRC matrices was performed,
using the ade4 package in the R platform [40]. Distance-based redundancy
analysis (dbRDA) was carried out based on the Bray–Curtis dissimilarity on
the serum metabolome, gut microbial composition and functional profile
using capscale [39] (function of the vegan package in R).

Co-inertia analysis (CIA) analysis. CIA was performed on gut microbial
abundance profiles and brain functional RRC matrices profiles, serum
metabolite abundance profiles and functional RRC matrices of samples to
assess the relationship between gut microbiome, serum metabolome
and rsFC.

PERMANOVA tests. PERMANOVA [41] was conducted on the species-
abundance and serum metabolite profiles of the samples to assess the
effect of each clinical measure [42] using the Bray–Curtis dissimilarity and
999 permutations in R (3.5.0, vegan package [39]). Clinical measures with
adjusted p < 0.05 were considered salient to associate with species and
serum metabolites. In addition, we applied the PERMANOVA to investigate
the possible effects of each BD-related serum metabolites and gut species
on the significant rsFC clusters in bipolar brains. Gut species and serum
metabolites with adjusted p < 0.05 were considered salient to associate
with the alterations of rsFC in BD.

Association analysis. Spearman’s correlation was used to ascertain the
pairwise correlations between clinical measures, BD-related serum
metabolites, BD-related gut microbial function and BD-related gut
microbial composition [43].
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Hypothesis testing and multiple testing correction. Differential abundance
of gut microbial composition, gut microbial function and serum
metabolites were tested by two-tailed Wilcoxon’s rank-sum test between
HCs and BD patients. Functional connectivity strength of rs-fMRI was
tested by Analysis of Variance (ANOVA) between HCs and BD patients. FDR
adjustment was employed by the Benjamin-Hochberg method [44] (using
the R package p.adjust), and the local FDR was provided in the article.

Random forest models
According to the previously reported method [45], the concentrations of
neuroactive metabolites in serum and disorder status classification were
modelled using the random forest 4.6–12 package [46] based on the
species' compositional profiles.

Variable selection. Firstly, the random forest regression model was used to
predict the concentration of the serum metabolites, and the largest
variable of IncMSE was selected as the first variable. Secondly, the first
variable and the remaining variables were combined into two variables to
predict the neuroactive metabolites, and the Q2 values of the predicted
results were computed and compared (the variables that maximise Q2

were selected). More variables were added iteratively in the same way,
until Q2 was no longer increased.

Q2 ¼ 1�
P

yi � byið Þ2
P

yi � yið Þ2

yi and byi are the i-th observation value and predicted value of the serum
metabolites, respectively.

Model training. Neuroactive metabolites were predicted by the variables
selected above, where Q2 was calculated, and the variables of importance
were obtained.

Cross-validation. We applied the leave-one-out cross-validation method.
Each sample was independently assumed as a validation set, and the
remaining 117 samples were assumed as training sets. Q2 was calculated
by the predicted value and the experimental value. Cross-validation was
used throughout all random forest modelling processes.

RESULTS
Serum metabolomic profiling reveals an apparent disparity
between BD patients and HCs
Serum samples were analysed by untargeted LC/MS. After quality
control, data filtering, and normalisation (see Methods), we
identified 12,127 metabolic features across 118 samples. Of these,
8918 features (73.54%) were altered in BD (FDR <0.05), indicating
extensive metabolic changes in BD patients. To investigate the
potential function of BD-related metabolites, we first annotated
metabolic features by using the Kyoto Encyclopaedia of Genes
and Genomes (KEGG) database. A total of 265 annotated serum
metabolites were obtained, including plasma metabolites with
important functions in humans. Given the symptomatologic
complexity and heterogeneity of BD, we also collected beha-
vioural data from patients, including diagnostic questionnaires
and demographic information (Supplementary Table 1). Notably,
we found no evidence that behavioural measures were directly
related to the serum metabolome (PERMANOVA test, p > 0.05).
Nevertheless, the severity of BD symptoms (quantitative measures
derived from questionnaires of MADRS, HAMD and HAMA) and
the proportion of T-cell subsets were significantly associated with
the serum metabolome (Fig. 1a, PERMANOVA test, p < 0.01).
Additionally, we found that years of education and sex exerted
moderate but statistically significant effects on the serum metabo-
lome of patients with BD (Fig. 1a, PERMANOVA test, p < 0.05). The
BD disease status, which accounted for almost 12% of the variance,
was the main factor for changes in the serum metabolome,
distinguishing BD patients from HCs (Fig. 1a).
We further examined the data with a dbRDA and found that the

serum metabolome in BD patients was in stark contrast to that
of HCs (Fig.1b PERMANOVA test, p < 0.01), where 138 of 265
metabolites were significantly associated with BD (Supplementary
Fig. 1 and Supplementary Table 3). Moreover, we observed
that levels of more than half (73.2%) of the metabolites were
reduced across all BD patients (FDR <0.05, |fold change | > 1.35;

Fig. 1 Altered metabolites in serum of BD patients compared to healthy controls. a The effect size of phenotype indices contributed
significantly to the variance (R2) of the serum metabolome (all subjects, BD: 80, HC: 38). b A clear discrepancy of serum metabolomes between
BD patients and healthy controls, revealed by the dbRDA. The metabolites (squares), which were identified as the main contributors to the
discrepancy are specified. c Major metabolic pathways involved in the differentially enriched metabolites comparing BD patients and healthy
controls. d Reaction steps for steroid hormone biosynthesis, tryptophan metabolism, arginine and proline metabolism, and citrate cycle (TCA
cycle). Metabolites enriched in HCs are shown in yellow, whereas the metabolites enriched in the BD are shown in red.
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Supplementary Fig. 1 and Supplementary Table 3). The BD
patients exhibited distinct patterns of metabolic pathway
changes, where the 138 serum metabolites were involved in 64
metabolic pathways, including citrate cycle, fatty acid biosynth-
esis, glutathione metabolism and arginine and proline metabolism
(Fig. 1c, d and Supplementary Table 3). Metabolites that were
reduced in abundance in BD reflected pathways involved in
steroid hormone biosynthesis, tryptophan metabolism, phenyla-
lanine metabolism, pyrimidine metabolism, pantothenate and
CoA biosynthesis, and butanoate metabolism (Supplementary
Table 3). Similarly, we found that the decrease of serum GABA,
common in BD patients, might be pertinent to the increase of
spermine as they shared the same precursor, putrescine (Fig. 1d).
The concomitant co-variation of GABA and neuroactive steroids in
BD, found in the present study, demonstrated the theoretical
plausibility of targeting neuroactive steroids in future BD
treatment (Fig. 1d).
Mounting evidence further suggested that dysregulation of the

metabolic fate of tryptophan via the kynurenine pathway may be
implicated in a range of severe psychiatric disorders, including BD
[47, 48]. In line with previous studies [49], the levels of kynurenine
and kynurenic acid were significantly lower in BD patients than
those in HCs (Fig. 1d). Notably, we found that indolepyruvate,
enriched in BD patients, might compete with the synthesis of
kynurenic acid and serotonin, all of which shared the same
precursor, tryptophan (Fig. 1d). Additionally, vitamins involved in
the production of neurotransmitters were significantly correlated
with the symptom severity of BD, including folic acid (vitamin B9),
pyridoxine (vitamin B6), pantothenic acid (vitamin B5) and
riboflavin (vitamin B2) (Supplementary Fig. 2), suggesting the
potential effects of regulating vitamin intake on BD symptoms.
Essential amino acids [50] and vitamins [51] cannot be
synthesised by humans and have to be acquired from the diet.
In addition, tryptophan derivatives (kynurenine, kynurenic acid,
serotonin), tyrosine derivatives (tyramine, dopamine), and some
B-vitamins (such as folic acid, pantothenic acid and pyridoxine)
have been reported to be produced by the gut microbiota via the
degradation of diet-derived amino acids and purine [52, 53]
(Supplementary Fig. 3).
We clustered BD-related serum metabolites (Supplementary

Table 3) and examined associations of cluster abundance with the
symptom severity in BD patients. Importantly, the clusters
including “neuroactive metabolites” of gut microbiota derivatives
(B-vitamins, kynurenic acid, GABA, SCFA derivatives) were strongly
associated with the symptom severity of BD across the entire
cohort (Supplementary Fig. 4). Taken together, we here discovered
apparent changes in serum metabolomics of BD; results that in
part could be explained through the analysis of metabolic
pathways.

Taxonomic and functional characterisation of the gut
microbiota in BD
To investigate whether the gut microbiota-mediated metabolomic
changes in BD, we analysed the gut microbiota using metagenome
shotgun sequencing across the 149 faecal samples, generating an
average of 107.3 million high-quality reads (16.1 Gb of data) per
sample on an Illumina HiSeq platform (Supplementary Table 4). The
high-quality sequencing reads were aligned to a comprehensive
reference, Unified Human Gastrointestinal Genome (UHGG), com-
prising 4644 species-level genomes [36], which allowed on average
91.9 ± 0.03% of the reads to be mapped (Supplementary Table 4),
highlighting a considerable coverage of the gut microbiome for
subsequent analyses. The classification resulted in a total of 3835
inferred prokaryotic species, and annotation of 9106 functional
categories using the KEGG database.
With respect to the behavioural data, we found that the BD

disease status was the major factor contributing to the alterations
in the gut microbiome. The severity of BD symptoms was also

significantly associated with microbial changes. In addition, BMI
and sex were associated with the gut microbiome changes in BD
patients (PERMANOVA test, p < 0.05, Supplementary Fig. 5a). BD
patients had significantly lower species counts (p < 0.01) and
bacterial Shannon-diversity (p= 0.062) than controls (Supplemen-
tary Fig. 5b, c), indicating that the diversity and richness of the gut
microbiota in BD patients were relatively poor. We observed a
higher β diversity of the BD microbiota (p < 0.01), implying a more
heterogeneous community structure among BD individuals than
that in HCs (Supplementary Fig. 5e). The dbRDA showed that the
taxonomic composition and functional potential of the BD
microbiota differed markedly from that in HCs (Supplementary
Fig. 5e, f), where we identified 600 species associated with BD
(Fig. 2a and Supplementary Table 5, FDR <0.05, |fold change | > 2).
Specifically, 136 species were enriched in BD patients, while 464
were depleted (Fig. 2a and Supplementary Table 5); species that
were most enriched in BD patients included Streptococcaceae
(nine species; Streptococcus mitis, Streptococcus oralis, Streptococ-
cus pseudopneumoniae, Streptococcus mitis and Streptococcus spp.),
Fusobacteriaceae (three species; Fusobacterium varium and
Fusobacterium spp.), Tissierellaceae (one species; Urmitella timo-
nensis), Bacteroidaceae (three species; Bacteroides barnesiae,
Bacteroides togonis and Bacteroidaceae spp.), and Actinomyceta-
ceae (five species; Actinomyces graevenitzii, Actinomyces oris,
Actinomyces spp. and Varibaculum cambriense) (Fig. 2a and
Supplementary Table 5). Depleted species included Akkermansia-
ceae (four species; Akkermansia muciniphila and Akkermansia spp.),
Yersiniaceae (five species; Yersinia aleksiciae, Yersinia frederiksenii
and Serratia spp.), Enterobacteriaceae (12 species; Citrobacter
freundii, Citrobacter werkmanii, Citrobacter spp., Cronobacter
malonaticus, Enterobacter cancerogenus, Enterobacter cloacae,
Enterobacter kobei and Enterobacter mori), Acidaminococcaceae
(eight species; Acidaminococcus fermentans, Acidaminococcus spp.,
Phascolarctobacterium succinatutens and Phascolarctobacterium
spp.), Eubacteriaceae (13 species; Eubacterium eligens, Eubacterium
spp.), Ruminococcaceae (43 species, Ruminococcaceae spp.,
Ruminococcus spp., Faecalibacterium prausnitzii, Anaerotruncus
colihominis and Anaeromas silibacillus), Morganellaceae (three
species, Providencia alcalifaciens), Flavobacteriaceae (two spe-
cies, Flavobacterium spp.) (Fig. 2a, Supplementary Fig. 6 and
Supplementary Table 5). With respect to the existing literature,
Streptococcaceae is of particular interest, as several Streptococ-
caceae, including S. vestibularis, have been found to be
associated with schizophrenia [54]. A. muciniphila negatively
correlated with BMI (Spearman correlation, r=−0.14, p=
0.0976), which was depleted in BD patients, was also reported
to be decreased in overweight, obesity, type 2 diabetes mellitus,
and hypertension [55–57]. Consistent with the previous finding
of Enterobacteriaceae (unclassified genus) related to BD [58], our
analysis here identified nine species of Enterobacteriaceae
associated with BD (Fig. 2b).
Functional analyses of single species showed that species

enriched in BD/HC encoded functions related to neuroactive
metabolites mediating central neuronal processes, such as acetyl-
CoA metabolism, polyamine biosynthesis, cofactor and vitamin
biosynthesis, and aromatic amino acid metabolism (Supplementary
Fig. 7). 15.4% of the BD-enriched species and 17.3% of the HC
enriched species displayed significant differences in these functions,
possibly reflecting disturbances of acetyl-CoA, polyamine, aromatic
amino acid, cofactor, and vitamin availability in BD. In addition, BD/
HC enriched species encoded a variety of amino acid, carbohydrate,
and methane metabolic functions (Supplementary Fig. 8). More
importantly, these microbial-derived functions concomitantly chan-
ged with the corresponding BD-associated serum metabolites
(Fig. 3). We thus concluded that the enrichment of metabolites in
BD patients was associated with gut microbiota-mediated AAA
biosynthesis, SCFA biosynthesis, choline-related function, cofactor
and vitamin biosynthesis.
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Microbiota alterations correlate with serum metabolome
changes in patients with BD
To further explore the links between the gut microbiota and
serum metabolome composition, we carried out an inter-omics co-
inertia analysis of the abundances of gut microbes and serum
metabolites. Strong connections were identified between gut
microbes and serum metabolites (Supplementary Fig. 9, RV= 0.265,
p< 0.05), where 98.5% (261/265) of serummetabolites were related to
at least one gut microbe. In particular, neuroactive metabolites
[59–61], including B-vitamins (pantothenic acid, riboflavin, folic acid
and pyridoxine), SCFA derivatives (3-methylthiopropionic acid and
2-hydroxybutyric acid), kynurenic acid and GABA, were related to
various gut microbes (Supplementary Fig. 10a), such as A. muciniphila,
F. prausnitzii, E. cloacae, Ruminococcaceae spp., F. prausnitzii and Y.

aleksiciae (Supplementary Fig. 3 and Supplementary Fig. 10b). To
substantiate the potential role of gut microbes in the production of
neuroactive metabolites, we focused on the microbial metabolic
pathway/genes predicted to encode enzymes, critical in the main
synthesis pathways of these compounds (Supplementary Fig. 2 and
Supplementary Table 6). We identified 1840 species, which contained
the whole metabolic pathway or encoded the key synthetases for
neuroactive metabolites in our reference genomes catalogue
(Supplementary Table 6). In addition to pyridoxine, these genes/
module abundances were significantly more abundant in BD patients
and in BD-enriched microbial species (Supplementary Fig. 11). Serum
concentrations of neuroactive metabolites significantly correlated to
the abundance of the metabolic pathway/cognate synthetase-
encoding genes in specific species. In particular, A. muciniphila,
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Fig. 2 Gut microbiota species associated with BD compared to controls. a Statistically significant results (FDR <0.05, fold change ≥2| fold
change ≤0.5) of the case-control discrepant analyses. Per microbial family, the number of increased (blue) or decreased (orange) species are
shown respectively, including 135 species in BD belonging to 33 families and 465 species in HC belonging to 59 families. b The boxplots show
the prominent species (including Yersiniaceae spp., Akkermansiaceae spp., Streptococcaceae spp., Ruminococcaceae spp. and Enterobacteriaceae
spp.) that differed significantly in abundances between BD patients and HC.
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Ruminococcaceae spp., Citrobacter spp., Eubacterium spp. and Yersinia-
ceae spp. were significantly associated with neuroactive metabolites
(Supplementary Fig. 12).
Guided by these findings, we applied random forest models to

estimate the correlation between each neuroactive metabolite
and the abundance of species that contained the metabolic
pathway/synthetase-encoding genes of that particular neuroac-
tive metabolite. Random forest models that maximised the
power of the neuroactive metabolites concentration prediction
in serum identified 154 microbial species (Fig. 4 and Supple-
mentary Table 7). The models accounted for, on average, 22% of
the variance of the target metabolite concentrations in serum,
indicating that the corresponding species largely contributed to
the production of neuroactive metabolites. Y. frederiksenii, Y.
aleksiciae, A. muciniphila, C. freundii, C. werkmanii, E. cloacae,
Ruminococcaceae spp. and Enterobacter kobei were the major
constituents in the random forest models (Fig. 4 and Supple-
mentary Table 7). Coherent with changes in neuroactive
metabolites in BD patients, most of the species (28.2%) were
more depleted in BD (Fig. 4 and Supplementary Table 7).
Importantly, species linked to the production of neuroactive
metabolites correlated robustly to BD symptom severity (MADRS,
HAMD, HAMA and YMRS) (Supplementary Fig. 13). Based on
these findings, we hypothesised that the intestinal microbiota
could affect BD pathophysiology, possibly through regulating
certain neuroactive metabolites.

A classification model based on the species discussed thus far
provided an area under the receiver operating characteristic curve of
0.81, differentiating BD patients from HCs (Supplementary Fig. 14a). In
this model, A. muciniphila, C. freundii, E. cloacae and Y. frederiksenii
were the major contributors (Supplementary Fig. 14b). These findings
suggest that microbes involved in the production of neuroactive
metabolites may be potential diagnostic biomarkers of BD.

Resting-state functional connectivity patterns in BD
To further investigate to what extent the intestinal microbiota and
neuroactive metabolites might influence brain activity, we
collected rs-fMRI of 44 BD patients and 37 HCs (Supplementary
Table 1). Based on the CONN’s data-driven hierarchical clustering
algorithm [26] of ROI-to-ROI spatial proximity and functional
similarity metrics [31] (see Methods for detail), 9180 pairwise
connections of 136 ROIs were classified into 210 clusters. We first
performed the PCA and found that the RRC matrix of BD patients
markedly differed from that of HCs (Fig. 5a, PERMANOVA test, p <
0.05). An FDR-corrected cluster-level q-value of 0.05 was applied to
properly control the family-wise error rates and threshold of the
RRC statistical map by merely including significant connectivity
clusters (Supplementary Fig. 15). Sixty-nine out of 210 clusters
were significant (GLM, FDR q < 0.05, Supplementary Table 8) with
1401 significant individual connections (post-hoc t-test, FDR q <
0.05, Supplementary Table 9), which resulted in 20 'networks'
(Fig. 5b and Supplementary Table 10). All significant clusters were
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brain views. All connections within- and between-networks were analyzed using GLM to establish differences in functional connectivity
between BD and HC subjects. Significant clusters (FDR q < 0.05) with significant individual connections are shown as coloured curves (reddish
scale: BD > HC contrasts; bluish scale: BD < HC contrasts). The opacity of connection curves corresponds to respective t-statistics.
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annotated and summarised according to CONN’s built-in network
clustering of atlas ROIs with regard to anatomical proximity and
functional similarity (Supplementary Table 8).
Our results revealed that compared to the HC group, the BD

group featured general reductions in functional connectivity (FC)
between limbic areas, including the hippocampal formation and
amygdala ('network-18' and 'network-19', Supplementary Fig. 16a
and Supplementary Table 8), and multiple cortical regions.
Highlighted cortical regions were the middle temporal gyrus
(MTG, classified into the default-mode network [DMN]; 'network-9'
and 'network-10'), inferior temporal gyrus (ITG temporo-occipital
part, classified into the dorsal-attention network [DAN]; 'network-
12'), and inferior frontal gyrus (IFG, classified into the language
network, 'network-8'). Over half (61.3%) of the significant
hypoconnectivity clusters (HC > BD contrast) revolved around
the limbic system ('network-18' and 'network-19'), indicating
possible disturbances in cognitive function and emotional

regulation in BD [62]. However, robustly strengthened FC was
also identified within the subcortical regions, particularly the
limbic system ('network-18' and 'network-19'), thalamus and
striatum including the caudate nucleus and putamen ('network-
20'), which spoke to potentially elevated neural communications
in the emotion and reward circuits in BD (Supplementary Fig. 16a).
In fact, previous studies found that BD patients with hypomania
exhibited increased connectivity between the ventral striatum and
thalamus [63], emphasising the involvement of thalamic-striatal
connectivity in BD.
Another noteworthy finding was the complex role of

interoceptive-sensorimotor networks played in the FC of BD. On
the one hand, hyperconnectivity in BD was observed encompass-
ing auditory ('network-1'), language (superior temporal gyrus, STG,
['network-3' and 'network-5'] and IFG ['network-8']) and sensor-
imotor (precentral/postcentral gyri, 'network-16' in Fig. 5b and
Supplementary Fig. 16b) areas. On the other hand, connections
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between parts of the sensory regions and subcortical areas were
largely attenuated in BD. The evidence seems to suggest that BD
patients may experience aberrant sensory information processing
and emotional appraisals of interoceptive activities [64]. Arguably,
the FC patterns between the auditory areas ('network-1' and part
of 'network-7') and subcortical regions were less conclusive
(Supplementary Fig. 16b). Increased FC of the auditory areas with
the hippocampus and amygdala and reduced FC of the auditory
areas with the thalamus were both observed, which might explain
the finding of some BD patients having psychosis-like experiences
[65]. Converging evidence thus far has demonstrated abnormal-
ities of FC in BD and stressed the importance of cognition,
emotion, and interoceptive-sensory perception related connectiv-
ity networks.

BD-related serum metabolites and gut microbes are tightly
linked to brain functional connectivity
Next, we assessed the effect size of the serum metabolomics, gut
microbiota and rsFC. The effect size of the serum metabolome and
rsFC (Pearson r= 0.395, p= 0.039) was greater than that of the gut
microbiota and rsFC (Pearson r= 0.368, p= 0.073) (Fig. 6a, b),
possibly reflecting that neural signals can alter the sensorimotor
and secretory functions of the gut through complex neurohu-
moral pathways, and the derivatives from gut microbes can
regulate the brain function through visceral and endocrine
circulation afferent signals [66]. Furthermore, we analysed the
association between BD-related serum metabolites/BD-related gut
microbes and ROI-based FC. We found that 86.96% (120/138) of
BD-related serum metabolites were significantly correlated
(Supplementary Table 11, PERMANOVA test, p < 0.05) with at least
one individual connection. In particular, folic acid, which was
documented to be related to the brain development [67] and
regulation of mood [68] and cognition [69], was correlated with
most of the significant clusters (85.51%, 59/69, Fig. 6c and
Supplementary Table 11), including brain regions and networks of
the hippocampal formation and amygdala ('network-18' and
'network-19'), thalamus and striatum ('network-20'), language
areas ('network-3', 'network-4' and 'network-5') and sensorimotor
areas ('network-10' and 'network-16') (Fig. 6c and Supplementary
Fig. 17). In addition, other neuroactive metabolites, such as
kynurenic acid, pyridoxine, GABA and riboflavin were significantly
associated with the FC of the thalamus and striatum ('network-
20'), auditory areas ('network-7'), language areas ('network-3',
'network-4' and 'network-5'), dorsal-attention network ('network-
12'), and hippocampal formation and amygdala ('network-18' and
'network-19'), suggesting that the identified dysregulation of the
neuroactive metabolites in serum may affect specific brain
functions, implicated to language, emotion and reward processing
in BD (Fig. 6c, Supplementary Fig. 17 and Supplementary
Table 11).
Likewise, 78.33% (470/600) of gut microbes were significantly

correlated (Supplementary Table 12, PERMANOVA test, p < 0.05)
with at least one individual connection. Specifically, micro-
organisms that were associated with neuroactive metabolites of
serum were also related to specific connectivity networks. For
instance, Akkermansia spp. (mostly A. muciniphila), C. freundii,
Yersinia spp. (Y. frederiksenii and Y. aleksiciae), Phascolarctobac-
terium spp., Flavobacterium spp. and Enterobacter spp. (E. cloacae
and E. kobei) were significantly associated with the FC of the
language areas ('network-3' and 'network-4'), thalamus and
striatum ('network-20'), sensorimotor areas ('network-10' and
'network-16'), and hippocampal formation and amygdala ('net-
work-18' and 'network-19') (Fig. 6d, Supplementary Fig. 17 and
Supplementary Table 12).
These results implied that the gut microbiota affected BD possibly

by affecting the metabolism of certain neuroactive metabolites,
which might, in turn, regulate the cognitive, emotional and
interoceptive function of the bipolar brain.

DISCUSSION
Accumulating evidence suggests that disturbed gut microbiota
may contribute to the pathophysiology of bipolar disorder, yet the
underlying mechanism remains unresolved [70]. By comparing the
gut microbiota, serum metabolome, and rsFC patterns between
unmedicated BD patients and HCs, we found that BD was
characterised by alterations in gut microbial composition, func-
tional potential and metabolic pathways impinging on the MGB
axis. The altered microbial and functional modules linked the gut
microbiota with dysregulation of microbiota-derived neuroactive
metabolites (pantothenic acid, riboflavin, folic acid, pyridoxine,
kynurenic acid, GABA and SCFAs). Moreover, further analyses of
functional connectivity in the bipolar brain complemented our
investigation of the MGB axis, revealing disturbances in the
hippocampus, amygdala, superior temporal gyrus and sensor-
imotor gyrus. Our multi-omics study has drawn tight lines
between specific microbiota-derived neuroactive metabolites
and highlighted neural networks, depicting a more nuanced
picture of MGB communication and how that may affect human
cognition and behaviour in the context of BD.
The crosstalk between the gut and the brain may take place

through multifarious pathways. For instance, the gut microbiota
can interact intimately with the intestinal immune system and
thus affect neuroimmunity; microbial products and metabolites
can signal through enteroendocrine cells and enterochromaffin
cells to modulate the secretion of neuropeptides and neuro-
transmitters; microbiota-regulated hormones can directly inter-
act with intrinsic enteric neurons and gut innervating vagal and
spinal afferents; micronutrients of microbial products provide
nutrition for the brain actively transporting across the
blood–brain barrier [66, 71, 72]. Existing evidence has supported
that mitochondrial dysfunction plays a crucial role in the
aetiology of BD [73, 74]. The citrate cycle is imperative for the
synthesis of mitochondrial ATP, and it was recently reported that
abnormality in the citric acid cycle of the mitochondria might
contribute to the development of BD [16].
Our work has contributed to the current evidence base by

elaborating BD-specific neuroactive microbes and metabolites,
involved in the abovementioned pathways of gut-brain commu-
nication. We found that BD-associated A. muciniphila, Citrobacter
spp. (C. freundii and C. werkmanii), Phascolarctobacterium spp.,
Yersinia spp. (Y. frederiksenii and Y. aleksiciae), Enterobacter spp. (E.
cloacae and E. kobei) and Flavobacterium spp. co-varied with
multiple B-vitamins in serum, indicated by the significant
deficiencies in folic acid (B9), riboflavin (B2) and pantothenic acid
(B5), and excess in pyridoxine (B6) among unmedicated BD
patients. In addition to dietary access, human gut microbial
communities have been reported to synthesise vitamins, which
are subsequently absorbed by the host in the large intestine
[71, 75]. The B-vitamins serve as pivotal micronutrients to maintain
brain function and mental health [71]. We observed that BD-
related alterations in identified B-vitamins and relevant gut
microbiota were associated with consistently weaker FC in
'network-18' (hippocampus), 'network-19' (amygdala) and 'net-
work-20' (thalamus and striatum), and stronger FC in 'network-10'
(inferior temporal gyrus) and 'network-16' (sensorimotor cortex)
though the latter lacked clear-cut evidence (Supplementary
Fig. 17). Similarly, GABA, SCFAs and kynurenic acid were also
detected as key BD-related neuroactive metabolites that can be
produced by A. muciniphila, Citrobacter spp. (C. freundii and C.
werkmanii), Phascolarctobacterium spp., Yersinia spp. (Y. frederiksenii
and Y. aleksiciae) and Flavobacterium spp. Abnormal levels of GABA
in arginine and proline metabolism have been reported to be
associated with BD [76]. Present literature indicates that neuroac-
tive steroids acting at inhibitory GABA receptors might be
candidate modulators of BD [77]. Apart from the robustly
diminished FC of 'network-18' and 'network-19' in BD, alluding
to the importance of the hippocampus and amygdala as neural
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nodes of BD, heightened FC in the language and auditory areas
(i.e. superior temporal gyrus; 'network-3' and 'network-5') was
detected in the case of depleted GABA and SCFAs (i.e.
2-hydroxybutyric acid). Increased FC harbouring the sensorimotor
areas ('network-12' and 'network-16') was more pronounced in the
kynurenic acid-centred analysis (Supplementary Fig. 17).
Notably, this study has employed the latest gut genome

catalogue [36] which is used as the reference for the gut
microbiome, and our average mapped reads ratio has reached a
high level of 91.9 ± 0.03%. Based on this catalogue, we
identified a few microorganisms exhibiting a strong correlation
to BD, including A. muciniphila, Citrobacter spp. (C. freundii and C.
werkmanii), Yersinia spp. (Y. frederiksenii and Y. aleksiciae) and
Enterobacter spp. (E. cloacae and E. kobei). Compared with the
previous 16 S RNA report [78–80], the current study had notably
higher sensitivity and accuracy.
It is important to note that our study has been limited by the

small sample size, imbalanced case-control ratio, the mere
inclusion of depressive bipolar patients, and the lack of additional
validation data. Arguably, the power calculation showed that the
current sample size and case-control ratio were acceptable to
achieve relatively satisfying statistical power (>0.8). Nevertheless,
the results we reported in this study can be generalised to bipolar
depression only, where we cannot preclude the possibility of
patients with a current manic episode exhibiting distinct
microbiome and metabolic profiles. Ideally, future studies with a
larger sample size should include BD patients in both manic and
depressive phases with a more balanced number of controls. It
would also be of interest to compare the multi-omics differences
with regard to the subtypes of BD if more type-I patients are to be
recruited. Another issue is the non-targeted analysis of serum
metabolomics, where more than 90% of the metabolites could not
be identified. This has hampered the research for merely focusing
on metabolites that are known to be relevant to the neuronal
processes, namely the neuroactive metabolites. It is likely that
some serum metabolites that we have overlooked may be crucial
in the physiology of BD, which warrants further investigations.
Based on the current associative evidence, it is not possible to

determine the causation of alterations in the gut microbiome or
serum metabolome to the development of BD symptoms, which is
a common limitation shared by studies of observational nature
[81]. Although the exact mechanisms of how the gut microbiota
affects the brain or vice versa are far from clear, our findings of
specific microbes as the sources of neuroactive metabolites of
interest have pointed to key signalling pathways and compounds
involved in the interactions between the gut and the brain. Our
future research will address this issue by utilising animal models
and intervention studies to further narrow the gaps in our
understanding of the MGB axis in higher-order human cognition
and behaviour. For example, faecal transplantation of gut
microbiota from drug-naïve or drug-free BD patients to germ-
free mice may allow us to investigate whether the BD-associated
gut microbial ecosystem could induce BD-like characteristics in
mice models, an experimental practice that has been reported in
schizophrenia research [82, 83]. Similarly, a well-controlled long-
itudinal intervention design makes it possible to follow and
scrutinise the progression and changes of symptoms along with
the timeseries-based assessment of gut microbiome and serum
metabolome in BD patients.
The last decade has seen a rapidly growing field of microbiome

research incorporating neuroimaging techniques and document-
ing how gut microbiota may influence brain structure and
function [84]. Our new analytical protocol of studying the gut
microbial ecosystem and serum metabolome in tandem with
whole-brain functional networks provides insights for research
exploiting the gut microbiota and neuroactive metabolites, e.g. B-
vitamins, kynurenic acid, GABA and SCFAs, as informative
biomarkers of diagnostic and prognostic potentials. This approach

may hold the particular promise for therapeutic intervention for
more targeted clinical management in the near future.
In conclusion, our study has identified BD-associated microbes

(A. muciniphila, Citrobacter spp. [C. freundii and C. werkmanii],
Phascolarctobacterium spp., Yersinia spp. [Y. frederiksenii and Y.
aleksiciae], Enterobacter spp. [E. cloacae and E. kobei] and
Flavobacterium spp.), neuroactive metabolites (B-vitamins, kynure-
nic acid, GABA and SCFAs) and functional connectivity networks
(language processing, emotion regulation and interoception). We
have comprehensively demonstrated interplays between the gut
microbiota at the species level and serum metabolites in
unmedicated BD patients and proposed new insights into the
MGB axis and the relationship between the gut microbiota, host
metabolism, and the dynamic bipolar brain.
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