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A B S T R A C T   

As a widespread indoor air pollutant, volatile organic compound (VOC) caused various adverse health effects, 
especial the damage to liver, which has become a growing public concern. However, the current toxic data are 
intrinsically restricted in the single or major VOC species. Limited knowledge is available regarding toxic effects, 
biomarkers and underlying mechanisms of real indoor VOC-caused liver damage. Herein, an indoor relevant VOC 
exposure model was established to evaluate the hepatic adverse outcomes. Machine learning and multi-omics 
approaches, including liver lipidomic, serum lipidomic and liver transcriptomic, were utilized to uncover the 
characteristics of liver damage, serum lipid biomarkers, and involved mechanism stimulated by VOC exposure. 
The result showed that indoor relevant VOC led to the abnormal hepatic lipid metabolism, mainly manifested as 
a decrease in triacylglycerol (TG) and its precursor substance diacylglycerol (DG), which could be contributed to 
the occurrence of hepatic adverse outcomes. In terms of serum lipid biomarkers, five lipid biomarkers in serum 
were uncovered using machine learning to reflect the hepatic lipid disorders induced by VOC. Multi-omics ap-
proaches revealed that the upregulated Dgkq disturbed the interconversion of DG and phosphatidic acid (PA), 
leading to a TG downregulation. The in-depth analysis revealed that VOC down-regulated FoxO transcription 
factor, contributing to the upregulation of Dgkq. Hence, this study can provide valuable insights into the un-
derstanding of liver damage caused by indoor relevant VOC exposure model VOC exposure, from the perspective 
of multi-omics analysis.   

1. Introduction 

Ambient air pollution exhibited increasingly serious hazard to global 
public health in recent years, posing a significant impact on premature 
mortality and morbidity (Fuller et al., 2022). According to the Global 
Burden of Disease (GBD) study in 2015, 4.2 million deaths were linked 
to ambient air pollutants, while an additional 2.8 million deaths were 
caused by household air pollution (Cohen et al., 2017). Moreover, 
people spend approximately 90 % of their time indoors, thus more likely 
suffering from indoor air pollution exposure (Cohen et al., 2017). Yet in 
recent years, the health risks of indoor air pollution on human were 
largely neglected, with focused primarily on the impact of outdoor air 
pollution. It is noteworthy that volatile organic compound (VOC) played 
increasingly significant role in indoor environment, for their capacity to 
react with other pollutants present indoors to produce harmful 

secondary pollutants (Cohen et al., 2017). Exposure to VOC have 
demonstrated to be intimately relevant to various adverse health effects, 
including allergies, respiratory diseases, liver dysfunction, and cancer 
(Shuai et al., 2018; Villeneuve et al., 2013). 

Liver acts as a pivotal organ for the regulation of metabolic path-
ways, detoxification of hazardous substances originating from the 
external environment, and purification of the blood (Stange et al., 
2000). Epidemiological studies have confirmed the relationship be-
tween chronic exposure to organic solvents and liver damage, such as 
cholestasis, in industrial workers (Liu et al., 2009). Moreover, VOC 
mixture (formaldehyde, benzene, toluene, and xylene) exposure also 
induced significant DNA damage and oxidative damage in the liver 
(Wang et al., 2013). Despite epidemiologic studies suggesting the strong 
association between VOC exposure and liver hazards, the characteris-
tically adverse outcome of liver injury induced by VOC and underlying 
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mechanisms remain poorly understood. 
Liver lipid homeostasis can exert crucial influence on coordinating 

fatty acid uptake, synthesis and oxidative decomposition, lipid export 
and redistribution of liver (Fang et al., 2022). Hepatic lipid disorder is 
clinically relevant to various disease, such as obesity, type 2 diabetes, 
liver fibrosis and even primary liver cancer (Carotti et al., 2020; Fang 
et al., 2022). For instance, due to the increased hepatic uptake and de 
novo lipogenesis, a compensatory enhancement of fatty acid oxidation is 
insufficient in normalizing lipid levels in non-alcoholic fatty liver dis-
ease (NAFLD) (Fang et al., 2022). Previous study focused on the 
assessment of single or mixed component of VOC on liver lipid meta-
bolism. For example, chloroethanol, one metabolite of VOC, altered 
lipid metabolism and resulted in hepatic steatosis due to changes in 
white adipose tissue lipolysis (Yu et al., 2022). Whether indoor relevant 
VOC could perturb the homeostasis of lipid metabolic profiles in the 
liver, considering as the indicators for liver injury, remained to be 
elucidated. 

Biomarkers in blood can estimate the impact of environmental pol-
lutants on human health for the capacity to reflect the internal condi-
tions of organisms (Wallace et al., 2016). Due to synchronous 
alternations between serum lipid response and abnormal liver lipid 
levels, the upregulation or downregulation of serum lipid is considered 
as a “warning” of the adverse outcome of liver (de Mello et al., 2012; 
Konieczna et al., 2014). For instance, serum TG and cholesterol (TC) 
were investigated to evaluate liver damage and lipid metabolism dis-
order induced by exterior compounds (Yu et al., 2022). Previous study 
merely demonstrated that the upregulation of serum TG and TC was 
accompanied by decreased liver function in biochemical workers with 
long-term occupational VOC exposure (Salehpour et al., 2019). Limited 
knowledge is available regarding serum lipid biomarkers reflecting the 
alteration of hepatic lipid metabolism profiles caused by indoor envi-
ronmental VOC exposure. 

Multi-omics combination technology is capable of improving the 
sensitivity and accuracy of assessment for the characteristics of liver 
damage, and revealing the interaction between environmental exposure 
and organisms (Da et al., 2020; Wang et al., 2021). In the current study, 
combined with multi-omics combination technology (liver lipidomic, 
serum lipidomic, and liver transcriptomic), an indoor relevant VOC 
combined exposure mouse model was established to evaluate the 
adverse effects on hepatic lipid, identify serum lipid biomarkers 
reflecting disorder of hepatic lipid, and clarify the mechanism of liver 
injury upon VOC exposure. These findings provide valuable insights into 
the understanding of liver damage caused by indoor VOC exposure and 
potential interventions to mitigate its adverse effect. 

2. Materials and methods 

2.1. Animal experiment and VOC exposure 

Six-week-old male C57BL/6J mice (22.2 ± 1.1 g), obtained from the 
Vital River Laboratories (Beijing, China), were housed in a standard 
animal centre of Hebei Medical University (23 ◦C, 12-hour light–dark 
cycle). All mice were maintained on a standard pellet diet and provided 
with free access to distilled water for drinking. After acclimatization for 
1 week (W), mice were randomly divided into control (CON) group and 
VOC group with 20 mice in each group. As described in our previous 
study (Zheng et al., 2022), mice were exposed with or without filtered 
VOC exhaust from the volatilisation of decorative paints (Shijiazhuang 
paint factory, Shijiazhuang, China) for 8 h (h) per day. The exposure was 
continuously performed for 4 W and 8 W, respectively. We adopted 
separate cage exposure equipment in this study to simulate the indoor 
relevant VOC environment. The indoor air was pumped by a blower, 
filtered by filter membranes, and sent to the mouse cage. Mice in the 
CON group inhaled room air filtered through a high efficiency particu-
late air (HEPA) and activated carbon (AST, environmental science & 
technology Co., Ltd, China) to remove particulate matter and VOC, 

respectively. Meanwhile, mice in the VOC group inhaled air filtered 
through HEPA to remove particulate matter. The sustained exposure 
concentration is maintained through stable internal environmental 
conditions within the unit, including a constant temperature of 25 ◦C, 
relative humidity of 50 %, and a pressure difference of 25 kPa. The mean 
daily concentrations of VOC in the CON and VOC rooms were 333.64 ±
82.57 ppbv and 613.86 ± 160.13 ppbv, respectively (Table S1). 
Furthermore, the concentration of each VOC component was measured 
at the 8th W of exposure, which was presented in Table S2. All experi-
mental procedures for this research were approved by the Institutional 
Animal Care and Use Committee of Hebei Medical University, and per-
formed under the institutional guidelines for ethical animal usage. All 
mice were euthanized with pentobarbital sodium treatment immedi-
ately following the last exposure. Liver and plasma in mice were 
collected for the subsequent lipidomic and transcriptomic assay. 

2.2. Hematoxylin-eosin staining 

Liver tissue samples from CON and VOC groups were fixed in 4 % 
paraformaldehyde (PFA) for 24 h and subsequently embedded in 
paraffin. Liver tissue section with 5 μm thickness was then submitted to 
the hematoxylin-eosin (H&E) staining procedure, which was carried out 
as previously described (Zhang et al., 2020). Stained sections were 
observed using a light microscopy (OlympusBX59, Japan) for the eval-
uation of histological alteration. After imaging, the area and perimeter 
of central vein in each section were measured using the Image Pro Plus 
software (version of 6.0). Furthermore, the number of inflammatory foci 
in randomly selected representative sections was counted to assess the 
degree of liver inflammation. Briefly, a total of 6 sections were analyzed. 
For each section, 6 high-power fields (HPFs) were randomly selected 
and the number of inflammatory foci within each HPF was counted. To 
ensure consistency, two independent observers blinded to the experi-
mental conditions counted the foci in each section. Any discrepancies 
between the observers were resolved through consensus. 

2.3. Oil red O staining 

The 4 % PFA fixed liver samples were frozen in optimal cutting 
temperature (OCT) compound, and sliced into 15 μm thick sections. 
Neutral lipids of all sections were stained using oil red O (Servicebio, 
China), followed by the observation and photograph with the Nikon 
Eclipse E100 microscope and Nikon DS-U3 imaging system (Nikon, 
Japan). Three fields of view from each liver section were randomly 
selected. In each field of view, the percentage of positive oil red O 
staining area was calculated using the ImageJ color thresholding tool of 
ImageJ software (version of 1.80), and the average percentage was 
calculated for each liver section. 

2.4. Lipidomic assay 

The liver and serum samples from CON and VOC groups were sub-
mitted to the lipidomic analysis. Briefly, liver tissue was homogenized in 
a chloroform–methanol mixed solution (2:1, − 20 ◦C) using a tissue 
grinder (BE-2600, Kylin-Bell, China). Serum samples were vortexed in a 
chloroform–methanol mixture. The obtained extracts were mixed with 
deionized water, and separated by centrifugation (12,000 g, 5 min) to 
obtain the lower layer fluid into a new tube. After drying down in vac-
uum, the extracts were reconstituted in isopropanol, and filtered 
through a 0.22 µm membrane for the subsequent liquid 
chromatography-mass spectrometry (LC-MS) analysis. The QC samples 
for liver or serum, a pool of samples (n = 8), were mixed from 20 µL of 
each liver or serum sample. To ensure sample accuracy, the QC samples 
were interspersed during the sampling injection process, and five bio-
logical replicates were performed for each group. 

LC-MS assay was conducted under the help of BioNovoGene Tech-
nology Co., Ltd. (China). In brief, samples were analyzed in electrospray 
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ionization (ESI) mode with a liquid chromatography instrument 
(Vanquish, Therma Fisher, USA) combined with a mass spectrometer 
(QE Focus, Thermo Fisher, USA). The separation of lipid was achieved 
using an ACQUITY UPLC® BEH C18 (100 × 2.1 mm, 1.7 µm, Waters, 
USA) at a column temperature of 55 ◦C. The mobile phase was consisted 
of acetonitrile: water 60:40 (0.1 % formic acid + 10 mM ammonium 
formate) (solvent A) and isopropanol: acetonitrile 90:10 (0.1 % formic 
acid + 10 mM ammonium formate) (solvent B). The gradient elution was 
as follows: 0–5 min, 70–57 % A; 5–5.1 min, 57 %–50 % A; 5.1–14 min, 
50 %–30 % A; 14–14.1 min, 30 % A; 14.1–21 min, 30 %–1 % A; 21–24 
min, 1 % A; 24–24.1 min, 1 %–70 % A; 24.1–28 min, 70 % A. The in-
jection volume was 2 µL. 

Acquired data were analyzed using the LipidSearch software. Lipid 
species were identified based on their accurate mass and retention time. 
The peak areas of identified lipid species were normalized to the internal 
standard and then used for the subsequent statistical analysis. Relative 
abundance of each lipid species was calculated as a percentage of the 
total ion intensity in the sample. Finally, Variable importance in pro-
jection (VIP) values and one-way ANOVA p-values were combined after 
statistical analysis to identify the significantly different lipid profiles 
between CON and VOC groups. 

2.5. Machine learning analysis of liver lipidomic and serum lipidomic 

The least absolute shrinkage selection operator (LASSO) method 
based on the R package “glmnet” was employed to perform high- 
dimensional data regression for the dual lipidomics, including liver 
lipidomic and serum lipidomic. The most effective predictors were 
selected, and the lambda value was set to one standard error during the 
LASSO regression process. Obtained biomarkers were evaluated by 
calculating the area under the curve (AUC) values using the R package 
“pROC”. Canonical correspondence analysis (CCA), used by the R 
package “vegan”, a widely used multivariate gradient analysis in omics 
studies, was utilized to determine the correlation between the abun-
dance of serum lipid biomarkers and hepatic lipid. The correlations 
between individual serum lipid biomarkers and hepatic lipid were 
analyzed using the Pearson correlation analysis with the “corrplot” R 
package. 

2.6. Transcriptomic assay 

RNA-sequencing (RNA-seq) and gene expression analysis were per-
formed under the help of BioNovoGene Technology Co., Ltd. (Suzhou, 
China). Total RNA was first extracted from liver samples using a Trizol 
(YEASEN, China) according to the manufacturer’s instructions. RNA 
concentration and purity were determined by measuring the absorbance 
at 260 and 280 nm using a NanoDrop 2000 spectrophotometer (Thermo 
Fisher, USA). RNA quality and effective concentration were assessed 
using an Agilent 2100 Bioanalyzer (Agilent, USA). After RNA extraction, 
purification, and library building, next generation sequencing (NGS) 
with paired-end (PE) was used for sequencing on the Illumina platform. 

The RNA-Seq data was processed and analyzed. In brief, the raw data 
was filtered by Cutadapt, quality-checked by FastQC, and aligned to the 
reference genome with Tophat2. Gene expression quantification was 
presented using HTSeq and expressed in fragments per kilobase of exon 
per million reads mapped (FPKM). Differential expression analysis was 
performed using the R package “DESeq2,” with differential expression 
genes (DEGs) identified using specific thresholds: log2 (fold change) > 1, 
p < 0.05. Functional and pathway enrichment analysis of DEGs was 
performed using R packages “clusterProfiler”, “org.Mm.eg.db” and 
“enrichplot”. 

2.7. Combinatorial analysis of transcriptomic and lipidomic data 

Pearson correlation analysis was executed by utilizing the “corrplot” 
R package, and the network graph was drawn based on the “igraph” R 

package. The strongly correlative lipids and genes were correlated with 
the kyoto encyclopedia of genes and genomes (KEGG) using Metab-
oAnalyst (version of 3.0), a web application that utilizes KEGG metab-
olomic pathways as a pathway knowledge base. Perturbed metabolites 
were ranked according to their statistical likelihood of being found 
greater than chance (p < 0.05), with corrections made for multiple 
comparisons. Potential impact of these metabolites on pathways was 
analyzed according to their position and topology. 

2.8. Immunofluorescence assay 

The paraffin-embedded lung tissues were cut into 4 μm thick slices, 
followed by de-paraffinization, re-hydration, antigen retrieval, and 
serum sealing. The slices were incubated with DAGK (1:100, Affinity 
Biosciences, China) or FOXO1 (1:100, Zenbio, China) primary antibody 
at 4 ◦C overnight, followed by the incubation of fluorescent goat anti- 
rabbit IgG (H + L) secondary antibody (Boster, China) for 45 min. 
Then the nucleus was counterstained with 4′,6-diamidino-2-phenyl-
indole (DAPI; Boster, China). After sealing with anti-fluorescence 
quenching sealing tablets, the slides were mounted in gelvatol for 
confocal immunofluorescence analysis, and then photographed under a 
fluorescence microscope (Olympus, Japan). 

2.9. qPCR analysis 

The total RNA of mice liver was extracted using Trizol (YEASEN, 
China). Then, 500 ng of total RNA was transcribed to cDNA using a 
reverse transcription kit (Sparkjade, China) in an ABI ProflexTM Ther-
mal cycler (Thermo Fisher, USA). The cDNA was then subjected to qPCR 
using a 2 × SYBR qPCR mix (Sparkjade, China) and the QuantStudioTM 
7 Flex Real-Time PCR instrument (Thermo Fisher, USA). The reaction 
was performed in a total volume of 10 μL, consisting of 0.4 μL primers, 2 
μL cDNA, 2.4 μL RNase free H2O, and 0.2 μL ROX reference dye. The 
β-actin of reference gene was used for normalization, and detailed 
primer pairs were shown in Table S3 (Supplementary file). 

2.10. Statistical analysis 

Except for the data of transcriptomic and lipidomic, the results of 
each group were presented as mean ± standard error of the mean (SEM) 
with at least three biological triplicates. Data analyses were performed 
using GraphPad Prism (version of 9.1.0), R (version of 4.2.1) and 
RStudio (version of 2023.03.0 + 386). Student’s t-tests were conducted 
to compare the two groups. Significant differences were considered in all 
tests when p was <0.05. 

3. Results 

3.1. Characteristics of liver lipid metabolism in mice upon VOC exposure 

To investigate the disturbance characteristics of indoor relevant VOC 
on hepatic lipid, a whole-body inhaled VOC mouse exposure model was 
established. Liver tissue was collected at two exposure time points, i.e. 4 
W and 8 W, which was capable of simulating the indoor relevant VOC 
exposure (Fig. 1A). Both body weight and liver coefficient of mice 
showed no significant alteration upon VOC exposure for 4 W and 8 W 
(Fig. S1 and S2). The quality control (QC) samples of lipidomic analysis 
indicated the reliablity of results (Fig. S3). PCA analysis showed clear 
differentiation in lipid composition between the CON and VOC groups, 
and a total of 20 lipid subclasses were identified, with glycerides, 
glycerophospholipids, glycolipids, and sphingolipids being predominant 
(Fig. S4). As illustrated in Fig. 1B, VOC exposure at 4 W and 8 W resulted 
in a significant decrease in glycerides, including TG, DG and mono-
glyceride (MG). For the glycerophospholipids, phosphatidylglycerol 
(PG) and lysophosphatidyl-ethanolamine (LPE) decreased, while PA and 
phosphatidylcholine (PC) increased. Partial glycolipid (MGDG) and 
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partial sphingolipid (SM) increased significantly only in 8 W of VOC 
exposure. No significant alterations were observed in other lipid sub-
classes (Fig. S5). 

To further address the targeting characteristics of VOC on hepatic 
lipids, differentially expressed lipids (DELs) were screened at thresholds 
of variable importance value (VIP > 1.0) and p value (p < 0.05). 
Compared to the CON group, 718 DELs were detected after 4 W of VOC 
exposure, while 1255 DELs were found after 8 W (Fig. 1C). At the sub-
type level of all major lipid classes, TG, DG, PG, PA, and PC showed the 
most significant changes (Fig. S6). As shown in Fig. 1D, 4 W of VOC 
exposure decreased all three glycerides (TG, DG, and MG), but increased 
the direct metabolites of DG such as PA and PC, indicating that VOC 
exposure led to lipid metabolism disorder in the liver. These changes 
were more pronounced at 8 W, with TG showing the greatest decrease 
and PA exhibiting the most significant increase among all lipid cate-
gories, suggesting that VOC exposure may cause a tended conversion of 
DG to PA. Clustering heatmaps of the DELs showed that after 4 and 8 
weeks of exposure, the DELs split into two large clusters of either 
increased or decreased (Fig. S7). The DELs of ceramide (Cer) and lyso-
phosphatidylcholine (LPC) were predominantly in the increased clusters 
after 4 weeks of exposure, and the DELs of Cer were virtually unchanged 
at 8 weeks relative to 4 weeks but more DELs for LPC appeared in the 
increased clusters. 

To examine the temporal response of hepatic lipids to VOC exposure, 
DELs at various time points were further analyzed. 448 lipids responded 
to VOC exposure at both 4 and 8 W, while 270 lipids responded exclu-
sively to 4 W and 807 lipids responded only to 8 W (Fig. S8). DELs were 
further categorized across lipid subclasses. As illustrated in Fig. 1E and 
F, glycerides, particularly MG and DG, showed significant responses at 
both 4 and 8 W, while glycerophospholipids, glycolipids, and sphingo-
lipids primarily responded at 8 W. Furthermore, the number of DEL 

species was higher at 8 W, with TG, DG, PC, PE, and cardiolipin (CL) 
being the most sensitive lipid categories to VOC exposure, suggesting 
that 8 W was the main time period for VOC to disturb the liver lipid 
metabolism. 

Oil red O staining confirmed the lipid disorder observed in lipidomic, 
revealing lighter staining of lipid droplets in VOC-exposed liver after 4 
and 8 W. Quantitative analysis showed a significant reduction in neutral 
fat content (Fig. 1G), indicating impaired fat accumulation. HE staining 
indicated no significant alterations in the central vein area but showed 
increased inflammatory foci and decreased hepatic sinusoid width after 
8 W of VOC exposure (Fig. S9). The above results revealed that indoor 
VOC can lead to abnormal liver lipid metabolism, mainly manifested by 
the decrease of TG and its precursor DG, accompanied by the occurrence 
of hepatic adverse outcomes. 

3.2. Identification of serum lipid biomarkers reflecting abnormal hepatic 
lipids by VOC exposure 

To identify the serum lipid biomarkers reflecting disorder of hepatic 
lipids by 8 W of VOC exposure, serum lipidomic analysis was then 
performed. The PCA plot showed a clear distinction between the CON 
group and VOC group, indicating a significant alteration of serum lipid 
profiles (Fig. 2A). There was no significant change in the content of total 
lipids in serum after 8 W of VOC exposure (Fig. S10). Among the glyc-
erides, glycerophospholipids, sphingolipids, and glycolipids, the relative 
levels of serum TG decreased and LPC increased under 8 W of VOC 
exposure (Fig. 2B-E), which were in accordance with the alterations in 
the liver. Volcano plots were further used to screen for DELs in serum, 
and 214 DELs were identified in the VOC and CON groups, including 118 
up-regulated DELs and 96 down-regulated DELs upon VOC exposure 
(Fig. 2F). Among the differential lipids in serum, glycerides such as TG 

Fig. 1. Characteristics of hepatic lipids in mice upon indoor relevant VOC exposure. (A) Schematic showing experimental design for animal experiments. (B) Relative 
lipids content changes (% total lipids) in CON and VOC mice. (C) Volcano plot of differential lipids in VOC group compare with CON group at 4 W and 8 W. (D) Z- 
score of differential lipid species in CON and VOC mice. Each dot represents a single sample. (E) Pie chart of the time distribution of differential lipids across in-
dividual lipid categories. (F) The stacking of different lipid quantities in different lipids at different time points. (G) Representative images and quantitative data of oil 
red O staining in mice liver. Scale bar = 75 μm. Data were expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, versus the respective CON group. 
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and its precursor lipid DG decreased in the VOC-exposed group, and the 
content of glycerophospholipids (downstream of DG) such as PC, PE and 
LPC increased (Fig. 2G). These data demonstrated that 8 W of VOC 
exposure decreased the overall serum TG levels and DELs of glycerides, 
but increased the downstream glycerophospholipids, suggesting an in-
crease in the direct conversion of glycerides to glycerophospholipids. 

The dual lipidomics data from liver and serum were subsequently 
analyzed to identify potential serum lipid biomarkers for the hepatic 
lipid alteration stimulated by 8 W of VOC exposure. Considering the 
decreased TG levels in both liver and serum, the potential correlation 
was firstly determined. Pearson correlation analysis in Fig. 3A found 
that serum TG positively correlated with liver TG (r = 0.66, p = 0.04), 
thus TG was concentrated to screen the potential lipid biomarkers. The 
model incorporated all the DELs of TG in serum lipids as characteristic 
variables and the proportion of TG in liver lipids as outcome variables. 
Based on ten-fold cross-validation, it was determined that the LASSO 
logistic regression model at log(λ) = 18.241 had the smallest binary 
deviance (Fig. 3B). Five lipid biomarkers were further identified using 
the LASSO logistic regression model (Fig. 3C), including TG 
(16:0_16:1_18:3), TG (16:1_16:1_18:3), TG (20:1_22:6_22:6), TG 
(22:4_18:2_18:2), and TG (51:6) (Table S4). The five biomarkers re-
flected hepatic lipid disturbances dominated by decreased TG. 

To further examine the accuracy of the above five biomarkers 
reflecting disorder of hepatic lipid caused by VOC, adjusted receiver 
operating characteristic (ROC) curves were calculated for each of the 
biomarkers. As illustrated in Fig. 3D, the area under the ROC curve 
(AUC) for each biomarker was 1, 1, 0.92, 0.96, and 0.88, respectively, 
while the AUC for combining the five biomarkers was 0.96, indicating 
that these biomarkers are highly accurate for determining VOC expo-
sure. A discriminant model of canonical correlation analysis (CCA) was 
also employed to verify whether the combination of five biomarkers can 

distinguish the VOC-exposed group from the CON group. As shown in 
Fig. 3E, the combination of these biomarkers revealed a significant 
correlation with the levels of several significantly altered lipid classes (i. 
e., DG, LPE, PC, PG, TG) in the liver in VOC group. Moreover, these 
biomarkers employed alone also showed significant correlations with 
several liver lipid classes affected by VOC (Fig. 3F), indicating that these 
markers can well reflect the changes in hepatic lipid metabolism. 
Combining these results, TG (16:0_16:1_18:3), TG (16:1_16:1_18:3), TG 
(20:1_22:6_22:6), TG (22:4_18:2_18:2), and TG (51:6) in serum were 
identified as lipid biomarkers for the supervision of abnormal hepatic 
lipid caused by VOC exposure. 

3.3. Potential mechanism of abnormal hepatic lipid metabolism in mice 
upon VOC exposure 

To track the potential mechanism of disturbed liver lipid metabolism 
of mice following 8 W of VOC exposure, transcriptional analysis was 
performed on the same liver samples. PCA revealed significant differ-
ences between CON and VOC groups (Fig. 4A). Gene set enrichment 
analysis (GSEA) was then used to examine changes in relevant metabolic 
pathways involved in glycerolipids and glycerophospholipids, the main 
types of hepatic lipid disorders. As illustrated in Fig. 4B and C, both 
glycerolipid metabolic pathway and glycerophospholipid metabolic 
pathway were downregulated by VOC, suggesting that the decrease in 
glycerolipids was not only dependent on the direct degradation but also 
the interconversion with glycerophospholipids. 

To further gain insight into the interconversion between glycer-
olipids and glycerophospholipids, the expression of genes involved in 
the glycerides and glycerophospholipids metabolic pathways was 
investigated in both CON and VOC groups. The gene expressions of these 
enzymes involved in metabolism were altered by VOC exposure, with 

Fig. 2. Effects of VOC exposure for 8 W on serum lipids. (A) The differences in global lipid profiles between CON and VOC groups. Relative (B) glycerides, (C) 
glycerophospholipids, (D) sphingolipids, and (E) glycolipids content changes (% total lipids) in CON and VOC mice. (F) Volcano plot for individual lipids in CON and 
VOC groups, comparing the fold change and p value. (G) Differential lipid species in CON and VOC groups. Each dot represents a single sample. Data were expressed 
as mean ± SEM (n = 5). *p < 0.05, versus the respective CON group. 
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the decreased expressions of Aldh3a2, Gpat4, Gpd2, Mogat1, Pisd, 
Gpcpd1, and Plaat3, along with the elevated expressions of Pcyt2, 
Pnpla6, Dgkq, Akr1b10, and Etnppl (Fig. 4D). Furthermore, TG, DG and 
MG in the glycerolipid metabolic pathway were all significantly reduced 
(Fig. 4E), suggesting that the reduction of TG may be related to the 
reduction of the precursor substance DG. In addition, in the metabolic 
pathway of glycerophospholipids, PG and LPE were significantly 
reduced, but PA and PC were significantly increased, indicating that the 
reduction of DG was related to the interconversion with 
glycerophospholipids. 

Considering that Dgkq, a key gene for the interconversion of glyc-
erolipid DG and glycerophospholipid PA, was significantly increased 
after VOC exposure (Fig. 4D and E), we hypothesized that the conversion 
between DG and PA was responsible for the significant changes in TG. To 
test this hypothesis, a correlation analysis of Dgkq abundance and the 
ratio of its mediated metabolites to precursors was performed, and the 
results showed that Dgkq was strong associated with the ratio of up-
stream DG and downstream PA (fold change = 2.31, p < 0.01) (Fig. 4F). 
Further analysis showed that Dgkq was correlated with the changes of PA 
and DG and their respective metabolic mechanisms, especially with PA, 
DG, TG and TG/DG (Fig. S11). The data indicated that Dgkq may be 
crucial regulator for the metabolic dysfunction between DG and PA, 
involved in the decrease of liver TG content. 

3.4. Further analysis for crucial mechanism of TG reduction in liver under 
VOC exposure 

To further investigate the in-depth mechanisms of hepatic lipid dis-
order caused by indoor relevant VOC exposure, paired differential 
expression analysis was performed, and the results showed that 379 up- 
regulated and 512 down-regulated DEGs occurred in the VOC group 
(Fig. 5A). KEGG analysis revealed that the upregulated DEGs were 
mainly associated with liver injury pathways, such as FoxO signaling 
pathway and cell cycle, while the downregulated DEGs were mainly 
associated with fatty acid synthesis and degradation (Fig. 5B). To further 
determine the potential connections among the pathways, network 
enrichment analysis of the KEGG pathway showed the FoxO signaling 
pathway was located in a pivotal position and had strong connections 
with other pathways (Fig. 5C). Meanwhile, the Forkhead family, to 
which FoxO transcription factors belong, was significantly enriched in 
the liver transcriptomic after 8 W of VOC exposure (Fig. S12). These 
results suggested that FoxO transcription factors and FoxO signaling 
pathway play a broad regulatory role in the liver upon 8 W of VOC 
exposure. 

Given Dgkq tightly correlated with decreased TG after VOC exposure, 
we aimed to investigate whether FoxO signaling pathway regulate the 
decrease of TG associated with the Dgkq. Initially, we screened 80 lipids 
and 92 genes closely associated with Dgkq in the liver (| Pearson r | >
0.9, p < 0.05) and ascertained a high degree of autocorrelation between 
the lipids and genes, suggesting possible co-expression after VOC 
exposure (Fig. 5D and E). Considering that co-expression modules is 

Fig. 3. Serum biomarkers of abnormal hepatic lipids under VOC exposure. (A) Pearson correlation between TG levels in the liver and TG levels in the serum of 10 
mice in the CON and VOC groups. (B) The choice of tuning parameter (λ) in the lasso model using tenfold cross-validation based on the minimum criterion. (C) 
Variation of the coefficients for five markers with the penalty parameter (λ). (D) The ROC plot for the evaluation of 5 lipids biomarkers performance in distinguishing 
between the CON and VOC groups. (E) CCA plots of lipid biomarkers and classes of lipids mostly altered on the liver from CON and VOC groups, and the correlation 
analysis. (F) Correlation heat map demonstrating the correlation between five serum lipid biomarkers and several lipid classes affected by VOC in the liver. * in-
dicates Pearson’s p < 0.05, ** indicates Pearson’s p < 0.01, *** indicates Pearson’s p < 0.001. 
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capable of clarifying the specific mechanism through omics changes, we 
applied the dual-omics KEGG to further investigate this potential co- 
expression. As shown in Fig. 5F, the FoxO pathway was significantly 
enriched in the co-expression module of Dgkq, indicating that the FoxO 
signaling pathway is closely related to Dgkq, along with other metabolic 
and liver injury pathways. Further correlation analysis in Fig. 5G veri-
fied the regulatory role between FoxO transcription factor and Dgkq. 
Foxo1 and Foxo4, the target genes of FoxO transcription factor, showed 
a notable negative correlation with Dgkq, indicating that FoxO tran-
scription factor may negatively regulate Dgkq through the two target 
genes, further promote the expression of Dgkq and thus led to the 
decrease of TG. In addition, DEGs in the FoxO signaling pathway asso-
ciated with protein hydrolysis or cell cycle (Skp2, G6pc, Ccnb2 and 
Cdkn1a) were also remarkably correlated with Dgkq. The changes in 
these key mechanistic genes were further verified by qPCR analysis of 
liver tissue. As demonstrated in Fig. 5H, Dgkq expression was upregu-
lated and FoxO transcription factor target genes (Foxo1 and Foxo4) 
expressions were downregulated under VOC exposure (p < 0.05). 

Meanwhile, immunofluorescence showed a significant increase in the 
expression of DGKQ in the liver (Fig. 5I) and a significant decrease in the 
expression of FOXO1 in the nucleus of hepatocyte (Fig. 5J) upon VOC 
exposure, which was consistent with the result of transcriptomics and 
PCR. These findings suggested that Dgkq is regulated by FoxO tran-
scription factors, leading to a decrease in TG. 

In addition, the results in Fig. 5B suggested that 8 W of VOC exposure 
resulted in significant downregulation of pathways related to fatty acid 
synthesis and degradation. GSEA analysis showed downregulation of 
fatty acid synthesis pathways, indicating reduced liver fatty acid content 
(Fig. S13). Significant reductions in longer fatty acyl chains were 
observed under VOC exposure, while short chains remained unchanged 
(Fig. S14). TG with different carbon numbers or double bond content 
also decreased. The results revealed that the inability of fatty acid chain 
synthesis to fill the depletion of degradation can also be a potential 
reason for the decrease of TG. In order to further explore the potential 
mechanisms at the metabolic level, changes in metabolic pathways were 
analyzed using dual omics KEGG. The co-expression of Dgkq and FOXO 

Fig. 4. Potential mechanisms of alterations in the hepatic glycerides and glycerolipids metabolism by 8 W of VOC exposure. (A) Principal component analysis of 
subjects in the CON and VOC groups. GSEA plot for (B) glycerophospholipid and (C) glycerolipid pathways. (D) Relative expression of genes involved in the 
glycerophospholipid and glycerolipid pathways in RNA-seq. (E) Selected glycerolipid and glycerophospholipid metabolic reactions from KEGG, with indications of 
quantified lipid classes (circles) and genes (rectangles) significantly regulated in VOC group. (F) The ratio of Dgkq gene to its downstream lipids and upstream lipids. 
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transcription factors had the same enrichment as the overall significant 
pathway in the liver, and there was also a correlation with related sig-
nificant genes (Fig. S15). This finding suggested that indoor relevant 
VOC exposure regulated Dgkq through FOXO transcription factors, 
which in turn affected the synthesis and decomposition of lipids and 
fatty acids. This dysregulation of lipid metabolism led to lipid disorders, 
accompanied by energy metabolism disorders, resulting in a decrease in 
the detoxification ability of the liver and ultimately leading to liver 
toxicity damage. 

4. Discussion 

Indoor air pollution exhibited increasingly significant public health 
concern, in which VOC represented the relatively majority (Cohen et al., 
2017). Previous study demonstrated that the specific adverse conse-
quences of liver injury induced by VOC are worthy of further study, 
especially in the case of liver lipid metabolism disorder, which can be 
reflected by the changes in serum lipids (Konieczna et al., 2014). Thus, 
serum lipid indicators are effective biomarkers used to assess liver 

Fig. 5. Upstream mechanisms of hepatic lipid disorders caused by VOC exposure using multi-omics analysis. (A) Volcano plots of the CON and VOC groups 
comparing ploidy changes and p values of individual genes. (B) KEGG analysis of up-regulated DEGs and down-regulated DEGs between the CON and VOC groups. 
(C) Pathway enrichment network diagram for up-regulated DEGs. (D) Correlation network to screen DLs and DEGs in the liver strongly correlated with Dgkq (| 
Pearson r| > 0.9, p < 0.05). (E) Six-quadrant plot of the lipids and genes, with each point representing a strong correlation between each gene and each lipid. (F) 
KEGG analysis of dual-omics based on genes and lipids strongly associated with Dgkq. (G) Scatter plots of FoxO pathway regulated genes or DEGs showing Pearson 
correlation coefficients and p values for correlation analysis of each gene with Dgkq. (H) Expressions of Dgkq, Foxo1 and Foxo4 in liver. (I) Representative images and 
quantitative analysis of DGKQ level in liver tissue using immunofluorescence assay. DGKQ (green), nucleus (blue). (J) Representative images and quantitative 
analysis of FOXO1 level in nucleus of hepatocyte using immunofluorescence assay. FOXO1 (red), nucleus (blue). Scale bar = 10 μm. Data were expressed as mean ±
SEM (n = 3). *p < 0.05, **p < 0.01, versus the respective CON group. Data were expressed as mean ± SEM (n = 3). *p < 0.05, **p < 0.01, versus the respective 
CON group. 
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health. This study, for the first time, elaborated the liver lipid injury 
characteristic, identified more serum lipid indicators, and clarified the 
potential mechanism of liver adverse outcome stimulated by the indoor 
relevant VOC. We found that VOC caused hepatic lipid disorder and 
damaged liver fat accumulation. TG (16:0_16:1_18:3), TG 
(16:1_16:1_18:3), TG (20:1_22:6_22:6), TG (22:4_18:2_18:2) and TG 
(51:6) in serum lipid were filtered as biomarkers to elaborate the hepatic 
lipid disorders induced by VOC, using the dual-omics analysis and ma-
chine learning. In addition, dual-omics analysis revealed that Dgkq was a 
key target of hepatic lipid disorders and negatively regulated by FoxO 
transcription factors. Our study helps to understand the characteristics 
and biomarkers of liver damage caused by VOC exposure, and provides 
unparalleled potential support to prevent or mitigate the harmful effects 
of VOC pollutant. 

Previous study only investigated the characteristic of liver damage 
induced by VOC using individual or a few components, which could not 
reflect the main alteration by VOC exposure in the real environment. For 
instance, Wang investigated that VOC mixture (formaldehyde, benzene, 
toluene, and xylene) exposure contributed to significant DNA damage 
and oxidative damage in liver (Wang et al., 2013). In this study, an in-
door relevant VOC exposure model was utilized to simulate real-life 
exposure scenarios. The complexity of air composition highlights the 
importance of using this exposure model, which can accurately isolate 
the effects of VOC exposure from other air components, highlighting its 
practicability in exploring the health effects of VOC exposure. Using the 
whole-body inhaled VOC mouse exposure model, our results indicated a 
decrease of overall liver fat accumulation, which may result from the 
disorder of hepatic lipid metabolism induced by VOC exposure, thereby 
reducing lipid biosynthesis and fatty acid biosynthesis. The variation of 
liver lipid composition disordered the coordination of fatty acid uptake, 
synthesis, oxidative decomposition, lipid export, and redistribution in 
the liver, which resulted in multiple liver disease (Fang et al., 2022). In 
our study, TG and precursor DG, as well as MG and PG were significantly 
reduced in the liver, while PA, PC, MGDG and SM were increased caused 
by VOC exposure, indicating the disturbances of lipid metabolism. The 
decrease in TG and DG observed in lipid composition imply that an 
inadequate energy supply and a diminished metabolic function of the 
liver, while an increase in PA may also contribute to liver inflammation 
and fibrosis risk (Saito et al., 2015; Siddiqui et al., 2015). In this study, 
aldehydes, ketones, aromatics, alkenes and alkynes accounted for 
approximately 44 % of the total VOC composition. Previous studies have 
shown that high concentrations of acetone may trigger liver injury 
associated with lipid disorders and oxidative stress (Zhang et al., 2018). 
The toxicity of vinyl chloride and perchloroethylene significantly alter 
lipid homeostasis in the liver, and there is evidence that perchloroeth-
ylene may act through the PPARα pathway (Anders et al., 2016; Zhou 
et al., 2017). Acrolein triggers lipid peroxidation adducts leading to 
oxidative stress and inflammation (Moghe et al., 2015), which is similar 
to the effects of mixed exposure to VOC components such as toluene 
(Moro et al., 2010). Recent studies suggest that VOCs and their metab-
olites may interfere with metabolism and signaling, affecting lipid ho-
meostasis and depleting hepatic energy reserves (Lang and Beier, 2018). 

Alteration in serum lipids can indicate the disturbances of hepatic 
lipids metabolism. Salehpour founded long-term VOC exposure 
impaired serum lipid in biochemical workers using the kits (Salehpour 
et al., 2019). However, the serum lipid biomarkers reflecting the alter-
ation of hepatic lipid metabolism profiles are still unclear. Our results 
showed a close relationship between serum lipids and hepatic lipids, as 
evidenced by a significant correlation between serum TG levels and liver 
TG levels. Moreover, it was determined that TG (16:0_16:1_18:3), TG 
(16:1_16:1_18:3), TG (20:1_22:6_22:6), TG (22:4_18:2_18:2), and TG 
(51:6) were able to distinguish VOC and control groups with high 
specificity and showed high accuracy for hepatic lipid disturbances 
dominated by TG decline. These TGs are all long-chain TGs, which are 
the main form of energy storage in fat cells, and their metabolism in the 
body is closely related to serum lipid levels and liver health (Keller and 

Layer, 2014; Nosaka et al., 2022). In previous studies, eight long-chain 
TGs were also found in serum as biomarkers related to hepatic steatosis 
(Draijer et al., 2020). Notably, we used LASSO regression for biomarker 
screening, which has the advantage of coping with strong feature se-
lection on high-dimensional data, being able to handle high-dimensional 
data and covariance data, as well as having better model interpretation 
compared to traditional regression models (Yin et al., 2022). 

As a comprehensive and high-throughput biological research 
method, various omics have been widely used to appraise the health 
hazard of environmental pollutants (Tang et al., 2022). In this study, 
transcriptomic revealed downregulation of glycerolipid and glycer-
ophospholipid metabolism pathways, which contributed to the 
decreasing of liver TG (Yang et al., 2022). Using multi-omics ap-
proaches, this study determined the key gene Dgkq for lowering TG 
levels after screening by correlation analysis. In previous studies, Dgkq 
has been associated with a variety of pathological states, including 
Parkinson’s disease, asthma, and dry syndrome (Lessard et al., 2013; 
Nalls et al., 2014; Vermeulen et al., 2020). In the liver, the Dgkq gene 
encodes an enzyme, diglyceride kinase, that converts DG to PA, thereby 
regulating the levels of DG and PA in the liver, and causing some ho-
meostasis disequilibrium (Fernandes et al., 2023; Zheng et al., 2023). 

In addition, this study identified the importance of the FoxO tran-
scription factors in the regulation of VOC-induced disorders of hepatic 
lipid metabolism. In previous studies, hepatic FoxO transcription factors 
have been shown to regulate lipid metabolism in the liver, which 
resulted in the liver accumulation in the same direction (Kim et al., 
2021). Foxo1 activity promotes hypertriglyceridemia, and Foxo1/3/4 
deficiency triggers a marked increase in the expression of inflammatory 
and fibrotic genes (Pan et al., 2017; Tikhanovich et al., 2013). This study 
reached a consistent conclusion that the downregulation of FoxO tran-
scription factors was accompanied by liver inflammation and the 
reduction of hepatic and serum lipids. DEGs in the FoxO signaling 
pathway associated with protein hydrolysis or cell cycle were also found 
to be significantly associated with Dgkq, such as Skp2, G6pc, Ccnb2 and 
Cdkn1a. Previous study reported that Skp2 played an important role in 
cell proliferation, differentiation and migration, G6pc was involved in 
hepatic gluconeogenesis and glycogenolysis, and that Ccnb2 and 
Cdkn1a were involved in the regulating of cell cycle (Gao et al., 2022; 
Liu et al., 2009; Youns and Abdel Halim Hegazy, 2017). These genes 
were significantly associated with Dgkq and might play a regulatory role 
in VOC-induced disorders of hepatic lipid metabolism. Hence, this study 
revealed that VOC exposure caused an increase in Foxo1 and Foxo4, 
leading to a decrease in Dqkq expression, which ultimately induced 
hepatic lipid disorders and liver injury. Nevertheless, the further in vitro 
study is needed to elucidate the underlying mechanisms for the results 
obtained in this research. 

5. Conclusion 

Using an indoor relevant VOC exposure model and multi-omics ap-
proaches, including liver lipidomic, serum lipidomic, and liver tran-
scriptomic, this study comprehensively investigated the adverse 
characteristics of VOC on hepatic lipid metabolism and liver damage. 
Lipidomic analysis revealed that indoor relevant VOC exposure could 
lead to lipid metabolism disorder in the liver, characterized by the 
decrease of TG and its precursor DG. Through machine learning, we 
identified five serum lipid biomarkers, which can effectively reflected 
the hepatic lipid disorders induced by VOC. Additionally, multi-omics 
analysis revealed that the upregulation of Dgkq disrupted the intercon-
version of DG and PA, leading to TG downregulation. Notably, the 
downregulation of the FoxO transcription factor by VOC contributed to 
the upregulation of Dgkq. Overall, our findings provide valuable data for 
the understanding of indoor VOC-induced liver damage and provide 
novel insights into the associated mechanisms. These results may have 
implications for developing interventions to prevent or mitigate the 
harmful effects of indoor VOC exposure. 
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